Receptive field for dorsal cochlear nucleus neurons at multiple sound levels.
نویسندگان
چکیده
Neurons in the dorsal cochlear nucleus (DCN) exhibit nonlinearities in spectral processing, which make it difficult to predict the neurons' responses to stimuli. Here, we consider two possible sources of nonlinearity: nonmonotonic responses as sound level increases due to inhibition and interactions between frequency components. A spectral weighting function model of rate responses is used; the model approximates the neuron's rate response as a weighted sum of the frequency components of the stimulus plus a second-order sum that captures interactions between frequencies. Such models approximate DCN neurons well at low spectral contrast, i.e., when the SD (contrast) of the stimulus spectrum is limited to 3 dB. This model is compared with a first-order sum with weights that are explicit functions of sound level, so that the low-contrast model is extended to spectral contrasts of 12 dB, the range of natural stimuli. The sound-level-dependent weights improve prediction performance at large spectral contrast. However, the interactions between frequencies, represented as second-order terms, are more important at low spectral contrast. The level-dependent model is shown to predict previously described patterns of responses to spectral edges, showing that small changes in the inhibitory components of the receptive field can produce large changes in the responses of the neuron to features of natural stimuli. These results provide an effective way of characterizing nonlinear auditory neurons incorporating stimulus-dependent sensitivity changes. Such models could be used for neurons in other sensory systems that show similar effects.
منابع مشابه
A receptive field for dorsal cochlear nucleus neurons at multiple sound levels
Neurons in the dorsal cochlear nucleus (DCN) exhibit nonlinearities in spectral processing, which make it difficult to predict the neurons' responses to stimuli. Here, we consider two possible sources of nonlinearity: non-monotonic responses as sound level increases due to inhibition; and interactions between frequency components. A spectral weighting function model of rate responses is used; t...
متن کاملEffects of stimulus spectral contrast on receptive fields of dorsal cochlear nucleus neurons.
Neurons in the dorsal cochlear nucleus (DCN) exhibit strong nonlinearities in spectral processing. Low-order models that transform the stimulus spectrum into discharge rate using a combination of first- and second-order weighting of the spectrum (quadratic models) usually fail to predict responses to novel stimuli for principal neurons in the DCN, even though they work well in ventral cochlear ...
متن کاملNonlinear temporal receptive fields of neurons in the dorsal cochlear nucleus.
Studies of the dorsal cochlear nucleus (DCN) have focused on spectral processing because of the complex spectral receptive fields of the DCN. However, temporal fluctuations in natural signals convey important information, including information about moving sound sources or movements of the external ear in animals like cats. Here, we investigate the temporal filtering properties of DCN principal...
متن کاملDevelopment of single- and two-tone responses of anteroventral cochlear nucleus neurons in gerbil.
Responses of anteroventral cochlear nucleus (AVCN) neurons in developing gerbils were obtained to single-tone stimuli, and two-tone stimuli elicited by best frequency probes presented over a range of intensities. Neurons displayed Type I, Type I/III, and Type III receptive field patterns. Best frequencies ranged from 1.5 to 10.0 kHz. Two-tone suppression (2TS) was first observed in 5 of 16 neur...
متن کاملDifference in response reliability predicted by spectrotemporal tuning in the cochlear nuclei of barn owls.
The brainstem auditory pathway is obligatory for all aural information. Brainstem auditory neurons must encode the level and timing of sounds, as well as their time-dependent spectral properties, the fine structure, and envelope, which are essential for sound discrimination. This study focused on envelope coding in the two cochlear nuclei of the barn owl, nucleus angularis (NA) and nucleus magn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 98 6 شماره
صفحات -
تاریخ انتشار 2007